Understanding Astronomical Filters

Who is Jim Thompson?

- Aerospace Engineer (M.Eng, P.Eng) Propulsion & Aerodynamics
- 25yrs Davis Engineering design & build IR suppression systems for ships & aircraft
- Live with wife & kids in Ottawa, Canada Bortle 9+
- Re-activated interest in astronomy ~2009
- Bad LP + Lack of Data = Filter Expert

Research, analysis, testing

Overview

Three-Part Presentation...

- Part I: What Are They
 - What do they do
 - Different types
 - How they work
 - Nomenclature
- Part II: How To Use Them
 - Enhancing solar system observing
 - Controlling light pollution
 - Suggestions & things to remember

Part III: Latest Filter Research

Part I: What Are They?

What Do Filters Do? Block Light You Don't Want To See

Improve contrast & sharpness
Emphasize features
See faint details

Example Application – Planets

GBReach Hilterr

Example Application – Deepsky

7

Types of Filters

- Planetary
- Colour (Wratten)
- Absorption

- Deepsky
- Nebula
- Light Pollution
- Interference (reflection)

Special Filters

- Some special combo-type filters also exist for:
 - Planetary observing
 - Chromatic aberration correction
 - Solar observing
 - UV/IR blocking
- Let's ignore for now

- > Dye infused glass, or gel sandwiched between glass
- Molecules in dye absorb some wavelengths but not others
- Broad pass bands, very gradual cut-offs

* Wratten (bought by Eastman Kodak in 1912)

Interference filters

10's to 100's of alternating coatings on a glass substrate

- each coating has different refractive index
- light partly reflects at each boundary
- by design all undesired wavelength reflections are out-of-phase - null each other out
- older filters sandwich layers between glass

Filter Spectrum

- Visually represent filter transmission vs. wavelength
- Allows easy comparison between filters
- Provides information on how filter performs

Luminous Transmissivity (%LT)

- Measure how "dark" filter is (how much light it blocks), w/ 100% = clear
- Calculated based on response of detector (eye, CCD, ...)
- Most often quoted assuming daytime visual use!

Filter response nomenclature

Colour Filter Spectra

- Blue & green filters wide band pass
- Yellow/Orange/Red/ IR filters – high pass
- Purple/pink/brown combination of pass types
- Gentle cut-offs, low tranmissivities
- Colour filters w/steep cut-offs available combo-type

Deepsky Filter Spectra

Pass desired object wavelengths: Hβ (486.1), O-III (495.9 & 500.7), Hα (656.3), NII (658.4), SII (672.4), NIR (>700)

only vailable data shown Multi-Band

only available data shown

Block LP – extent varies by filter type

- Medium (35–50nm)
- Narrow (20-35nm)

500 600 Wavelength (nm)

- Narrow pass band around single wavelength
- Hα, NII & SII only for imaging
- Range of FWHM available:
 - Visual or Imaging 10-20nm
 - Imaging Only <10nm

 Multiple broad pass bands

HP OIL C2 Hg M Hg NI SI

- Blocks discrete LP wavelengths
- Provide best white balance
- Overall LP reduction is moderate-to-poor
- Broadband LP (eg. LED) reduces effectiveness

- Narrow pass bands around >1 emission wavelength
- Dual-, tri-, or quad-
- Maximize LP blocking when observing/ imaging emission nebulae
- Recently popular w/ OSC imagers

Part II: How To Use Them

Solar System Observing

- Use filters to darken some features but not others
- Primarily using colour (absorption) type
- Filter choice very subjective:
 - A lot of trial-and-error
 - Personal preference

Planetary Filters - The Long...

Object	Features	Recommended Filter
Mercury	Planet/Sky Contrast	#23A Light Red
	Features	#25 Red #29 Deep Red
Venus	Clouds	#38A Deep Blue #47 Violet #58 Green
	Planet/Sky Contrast	#25 Red #29 Deep Red
	Terminator	#25 Red #29 Deep Red
Moon	Detail	#56 Light Green
	Feature Contrast	#8 Light Yellow #12 Yellow #15 Deep Yellow #80A Blue
	Low Contrast Features	#82A Light Blue
	Glare Reduction	ND13 Neutral Density Variable Polarizer
Mars	Clouds	#15 Deep Yellow
	Maria	#8 Light Yellow #15 Deep Yellow #11 Yellow-Green #21 Orange

	#23A Light Red #25 Red #29 Deep Red
Blue-Green Areas	#12 Yellow #23A Light Red
Dust Storms	#38A Deep Blue #56 Light Green
Polar Caps	#15 Deep Yellow #25 Red #29 Deep Red #47 Violet #56 Light Green #58 Green Deep Sky Filter
Low Contrast Features	#82A Light Blue
Clouds	#11 Yellow-Green
Belts	#8 Light Yellow #15 Deep Yellow #21 Orange #23 A Light Red #25 Red #29 Deep Red #38 A Deep Blue #56 Light Green #80 A Blue
Rilles	#80ABlue
Festoons	#80ABlue
Atmosphere	#56 Light Green

Jupiter

	Red-Orange Features	#12 Yellow
	Orange-Red Zonal	#8 Light Yellow
	Red/Blue Contrast	#11 Yellow-Green
	Blue/Light Contrast	#25 Red
	Great Red Spot	#38A Deep Blue #80A Blue
	Galilean Moon Transits	#25 Red #29 Deep Red
	Red/Blue/Light Contrast	#56 Light Green #58 Green
	Polar Regions	#21 Orange #23A Light Red
	Disc	#38A Deep Blue
	Low Contrast Features	#82A Light Blue
Saturn	Clouds	#11 Yellow-Green #12 Yellow #25 Red #29 Deep Red
	Belts	#15 Deep Yellow #21 Orange #23A Light Red #38A Deep Blue #58 Green

		#80ABlue
	Polar regions	#21 Orange #23A Light Red #58 Green #80A Blue
	Rings	#47 Violet
Cassini Division	#11 Yellow-Green	
	Red/Blue Contrast	#11 Yellow-Green
	Red/Orange Features	#12 Yellow
	Low Contrast Features	#82A Light Blue
Uranus	Dusky detail	#8 Light Yellow #15 Deep Yellow
Neptune	Dusky detail	#8 Light Yellow #15 Deep Yellow

Many recommendations available!

Planetary Filters – The Short...

- My personal recommendations:
 - Magenta (CC20M, #47, #30) Mars, Jupiter
 - Red (#23, #25, #29) Moon, Mars
 - Light Tan/Orange (#81B, #85) Jupiter, Saturn
 - Variable Polarizer or ND Moon, Venus
- Just want single all-purpose filter?
 - Special type "Moon & Skyglow" (Baader)
- Remember: filters block light ... view is darker
 Dark filters (low %LT) require large scope

Solar System Imaging

- Contrast, colour, etc. all controlled in post processing
 - Colour filter not needed
- Main concern is "seeing"
 - At a minimum UV/IR cut
 - Or try longer wavelengths red or IR high pass (monochrome)

Good all-purpose planet/Moon imaging filter

"Moon & Skyglow" (Baader, UV/IR cut incl.)

Deepsky Filter Impact – Imaging

Choosing a Deepsky Filter

- Like Planetary, want to increase contrast
- Interference-type filters more capable
 - precise bandwidths & steep cut-offs
- Best filter to use depends on:
 - amount and type of light pollution
 - object type (galaxies, clusters, nebulae)
 - size & type of optics
 - tracking capability (EAA or imaging)

Light Pollution Spectra

LP is everything between us & deepsky object

Deepsky Object Spectra

 Galaxies, reflection neb., stars, globular & open clusters

> = broad spectrum

 Emission nebulae (HII, planetary, super nova remnant) = narrow band

Deepsky Filters vs. Aperture

Recall that filters make scene darker

- %LT of filter limits practical scope aperture for visual use
- no limit on aperture for EAA/ imaging – compensate w/exposure time (tracking)
- Impact on broad spectrum objects MUCH WORSE

Choosing a Deepsky Filter, cont'd

Object Type	Dark Sky	Light Polluted Sky	
Narrow Band: Emission Nebulae (incl. planetary & supernova remnants)	– Narrowest filter aperture (visual) or mount tracking (EAA/imaging) will support. Adding IR cut can also help improve contrast with camera.		
Broad Spectrum: Galaxies, globular clusters, open clusters, reflection nebulae	 Don't use filters visually. IR cut <i>can</i> help contrast with camera. 	 No significant benefit visually. EAA/imaging, filters that pass IR req'd, wide to medium band pass working best. Best contrast on galaxies w/IR high pass filters, but long exposure time req'd. 	

- Unfocused IR in refractors (EAA/imaging):
 Most ED doublets and APO triplets not a problem
 - Commercial camera lenses (esp. security) usually need IR cut

Some Other Effects of Filters

- Filter changes white balance (WB)
 - Broadband, O-III, Hbeta, Halpha, IR pass
 - Some filters better than others (eg. Multi-band)
 - Post processing may not completely correct (EAA/imaging)
- Filter changes focus slightly
- Filter adds more surfaces
 - Reflections (halos); quality filters have anti-reflective coatings
 - Dirt, dust, or dew most evident with bright objects

You Get What You Pay For

- Tempting to buy cheapest, but quality suffers
 - reflections, de-lamination, poor machining, optical distortion, poor transmission
- (Too) Many filter manufacturers available
 - Premium (\$\$\$\$): Andover, Astrodon, Chroma, Custom Scientific, FLI, OPT Radian
 - High Quality (\$\$\$): IDAS, Astronomik, Baader, Lumicon, Televue
 - Good Value (\$\$): 1000 Oaks, Meade, Optolong, Orion, Antlia
 - Discount (\$): Antares, Arcturus, DGM, Omega, ZWO
 - Avoid: Canadian Telescope, Celestron, Kson, Olivon,
 Omegon, Optical Vision, Sirius, Svbony, Zhumell

Part III: Latest Filter Research

Multi-Narrowband Arms Race

- Very popular with OSC imagers
- OEMs working to produce "ultimate" filter
- Narrower bands = higher contrast

Narrowband Filters + Fast Optics

- Interference-type

 layer thickness
 defines pass band
- Change thickness, change pass band
- Faster optics = steeper light cone
 - Shifts CWL down
 - Reduces %LT
 - Increases FWHM

Narrowband Filters + Fast Optics

SHO Narrowband Testing

- Filters down to 3nm wide
- Had to upgrade spectrometer for better resolution (change slit & grating)
- Currently comparison image testing Halpha filters

Chroma Ha 3nn

The End: Questions?

Abbey Road Observatory: http://karmalimbo.com/aro/

